Modeling Jupiter’s Origin Story
Using data from both the Galileo and Juno spacecraft missions, a new model of Jupiter’s formation explains the heavier elements in the gas giant’s atmosphere.
There’s this curious relationship between theory and observation where one keeps leading to the other. First, you see an object in the sky. Then you make a hypothesis about what it is. Then you observe some more, and you change the hypothesis with the new information. As you get more and more data, you can refine the hypothesis. Yay for the scientific method.
As computing has gotten more advanced, we’ve gone from paper calculations to massive simulations that we can use to model our hypotheses and see if they really do play out. After all, we cannot rewind the formation of our own solar system to watch it happen, and going to various worlds is costly and difficult. So we make do with what we’ve already collected and keep building on our observations with these computer-generated models. Sometimes, we get lucky and get a newer mission to provide more data, though, and such is the case with Jupiter and NASA’s Juno spacecraft.
Using all that new data, along with data from the Galileo mission, a team has published their model of Jupiter in The Astrophysical Journal Letters. Because…